CloUdPlexo
Modernize and secure all processes.

AWS Case Study: Re-architecting Infrastructure from
Monolithic to Microservices for Convexity

Background

About Convexity:

Convexity Technology Limited stands as a prominent blockchain consultancy firm,
not only in Nigeria but also across Africa. At the forefront of their offerings is their
groundbreaking solution known as the ‘Convexity Humanitarian Aid Transfer
Solution.” This innovation is designed to establish comprehensive visibility and
transparency in the distribution of humanitarian aid throughout Nigeria and Africa.

This solution seamlessly connects all stakeholders involved in the aid distribution
chain, spanning from donors to beneficiaries, leveraging the power of blockchain
technology to ensure efficiency and accountability.

The Convexity Humanitarian Aid Transfer Solution (CHATS) represents the flagship
product of Convexity. With a dedicated product team boasting over two decades of
collective experience in both humanitarian and financial sectors, CHATS is
purpose-built to tackle distribution challenges associated with Cash & Voucher
Assistance (CVA) in Africa. By harnessing blockchain technology, CHATS aims to
combat fraud in aid administration and enhance the welfare of vulnerable individuals
and households.

The Convexity team is actively developing a digital cash and voucher transfer
platform underpinned by blockchain technology, facilitating the seamless movement
of funds between donors, NGOs, and other relevant parties. Blockchain's inherent
immutability and transparency empower donors and auditors to monitor aid
distribution processes closely.

CHATS ensures that all aid recipients possess a wallet account linked to a verified
individual, offering multiple channels for aid redemption, including USSD, SMS
vouchers, QR code paper vouchers, and NFC cards for beneficiaries without internet
access or smartphones. Moreover, aid distribution is meticulously geo-fenced and
mapped to prevent unauthorized disbursements, thereby providing donors with
real-time visibility into their funded projects.

Crucially, the CHATS system is fortified with a non-custodial smart contract
cryptocurrency fund management system, allowing donors to intervene in case of



CloUdPlexo
Modernize and secure all processes.

suspected malpractice during the disbursement process by pausing or retracting
funds. This proactive measure further solidifies trust and accountability within the aid
ecosystem, fostering impactful humanitarian initiatives across Nigeria and Africa.

Challenges

1. Scalability Issues: The monolithic architecture made it difficult to scale
individual components independently, leading to resource inefficiencies and
performance bottlenecks.

2. Deployment Bottlenecks: Any change or update required the entire application
to be redeployed, increasing downtime and the risk of introducing bugs.

3. Limited Agility: The tightly coupled components slowed down the
development process and hindered the ability to innovate rapidly.

4. Resource Management: Inefficient resource utilization resulted in higher
operational costs.

Objectives

1. Improve Scalability: Enable independent scaling of different services to better
handle load variations and optimize resource usage.

2. Enhance Agility: Allow for faster deployment and more frequent updates with
minimal downtime.

3. Optimize Resource Utilization: Reduce operational costs by leveraging AWS's
flexible infrastructure and services.

4. Increase Reliability: Ensure high availability and fault tolerance for critical
financial services.

Solution

Convexity partnered with CloudPlexo expertise on AWS to re-architect their
monolithic application into a microservices architecture leveraging CloudPlexo’s
DevOps service. The solution involved the following key steps:

1. Assessment and Planning

CloudPlexo AWS Solution Architects conducted a thorough assessment of
Convexity's existing infrastructure. A detailed plan was developed to transition to a
microservices architecture, considering the following aspects:



CloUdPlexo
Modernize and secure all processes.

Identifying and defining microservices boundaries.

Selecting appropriate AWS services for hosting and managing microservices.
Establishing a robust CI/CD pipeline for continuous integration and
deployment.

2. Service Decomposition

The monolithic application was decomposed into discrete, independently deployable
microservices. Key functionalities such as user authentication, analytics, reporting,
and notification services were separated into individual microservices.

3. Containerization with Amazon ECS

Each microservice was containerized using Docker. Amazon Elastic Container
Service (ECS) was chosen to orchestrate and manage these containers, providing:

e Scalability and load balancing.
e Simplified management of containerized applications.
e Integration with other AWS services.

4. APl Gateway and Service Mesh

Amazon API Gateway was implemented to provide a unified entry point for all
microservices, enabling:

e Traffic management.
e Authorization and access control.
e Monitoring and logging.

AWS App Mesh was used to manage the communication between microservices,
ensuring:

e Secure and reliable service-to-service communication.
e Observability and tracing.

5. Data Management with Amazon RDS and DynamoDB

Data storage was re-architected to use a combination of Amazon RDS for relational
data and Amazon DynamoDB for high-performance NoSQL needs. This setup
provided:



CloUdPlexo
Modernize and secure all processes.

e Scalability and high availability.
e Optimized query performance.
e Cost-effective storage solutions.

6. CI/CD Pipeline with Github Actions

An automated CI/CD pipeline was established using Github Actions for Continuous
integration and delivery.

e Automated testing and deployment.
e Reduced deployment times and errors.

7. Monitoring and Logging with Amazon CloudWatch

Amazon CloudWatch was implemented to monitor application performance and
health. This included:

e Real-time monitoring and alerts.
e Detailed logging and metrics collection.
e Insights for proactive troubleshooting and optimization.

Results

Scalability: Convexity can now independently scale each microservice based on
demand, significantly improving resource utilization and performance.

Deployment Efficiency: Deployment times were reduced by 70%, with the ability to
deploy updates to individual microservices without affecting the entire application.

Agqility: Development cycles became faster and more efficient, allowing Convexity to
roll out new features and updates more frequently.

Cost Optimization: The move to AWS and microservices architecture resulted in a
30% reduction in operational costs due to better resource management and
scalability.

Reliability: The new architecture provided enhanced fault tolerance and high
availability, ensuring consistent service delivery to Convexity's clients.



CloUdPlexo
Modernize and secure all processes.

Conclusion

Re-architecting from a monolithic to a microservices architecture on AWS enabled
Convexity to overcome its scalability, deployment, and resource management
challenges. This transformation not only improved their operational efficiency and
reduced costs but also empowered them to innovate rapidly and deliver a superior
user experience to their clients.

AWS Services Used:

Amazon ECS

Amazon RDS for MySQL
Amazon ECR

Amazon X-ray

AWS App Mesh
Amazon CloudWatch

Keywords: AWS, Microservices, Financial Services, Cloud Computing, Scalability,
CI/CD, Containers, API Gateway, Service Mesh, Data Management, Monitoring



